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ON THE CONVERGENCE OF STOCHASTIC APPROXIMATION PROCEDURES 
UNDER MARKOV NOISE IN THE MEASUREMENTS* 

I.Ia. KATS 

The problem is considered of the convergence of stochastic approximation procedures 
/1,2/ for seeking the zero of a function under the condition that the valuesofthis 
function, accessible to measurement, contain both external as well as internal per- 
turbations. The statement of this problem differs from the most prevalent ones in 
that the assumptions on the independence and additivity of the noise are waived. 
The proof of the convergence is based on the use of stochastic Liapunov functions/3 
-6/. Discrete stochastic approximation procedures under dependent measurements 
were examined, for instance, in /7,8/ with another way of accounting for the pertur- 
bations and by other methods. The majority of papers on the study of stochastic 
programming /9/ and stochastic approximation procedures assume the independence of 
the measurements and the additivity of the noise. Without disparaging such an ap- 
proach, it should be emphasized that it does not exhaust all varieties of problems 
whose study might lead to stochastic approximation procedures. In particular, if 
the measurements are made sufficiently often or, even more so, continuously, then 
the assumption of dependence of the measurements proves to be very natural,special- 
ly if the noise realize parametric perturbations of the system. Other examples, 
not covered in the scheme of independent measurements, are the problems of adaptive 
control, of observation, of estimation /lo/. There are comparatively few papers 
(see /7,8/, for example) where the convergence of gradient procedures of extremum 
search is proved in the presence of additive Markov noise. Conditionsare formulated 
in the present paper on the convergence of stochastic approximation proceduresunder 
the condition that the measurements contain both additive as well as nonadditive 
(internal) Markov perturbations. The analysis is restricted to procedures of the 
Robbins-Monroe type, mainly in the continuous version. 

1, Statement of the problem. Let f(z) be an unknown n-vector-valued function defin- 
ed on a Euclidean space fi("), We solve the problem of seeking the root 3 of the equation 
f(z) = 0 by use of the recurrence procedure 

z(k -I- 1) = z(k) + a(k) ~(k + 1), I (0) = x0, k = 0,s.. 

The random n-vector y (k f 1) defined at each step of the equality 

(1.1) 

y(k + 1) = f(k, z(k), q (k + 1)) + s(k, x(k)) S(k + 1) (1.2) 

is accessible to measurement. Here v(k) is a Markov sequence with an arbitrary bounded set of 
states q((k)~ Y. The noise E(k), k = 1, . . , form a sequence of independent r-dimensional 
vectors, also independent of q(k), and 

MEk = 0, ME&’ = E, 

In the notation adopted,Mis the symbol for the mean, the prime denotes transposition, and 
E, is the unit r -matrix. The matrix (J (k, x), in general, is unknown, the dependence of 

f (k,s,q) on 1 is made concrete later , and a(k) is a nonnegative number sequence. Under these 
conditions we are required to find constraints on the random process q(k) and onthe functions 
f(z), f (k, 3, 111, 0 (k ~1 arid a(k), which ensure the convergence x (k)+O as k+ m with probab- 
ility 1. 

The following model can serve as a natural generalization of procedure (l-l), (1.2) to 
the case of continuous measurements. Let the n-vector-valued signal y(t), t>O, defined by 
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the equality 

Y(t) = f ft> 5 (t), 9 (tN + ff tt, 2 (6) 5 (1.3) 

be accessible to measurement. To determine the root of the equation f(x) = 0 we constructthe 
continuous procedure 

dx = a(t) [f(t), x (t), rl (0) dt f s (8, z (t)) cG1, x(O) = x0, rl (0) = q. (1.4) 

As in the discrete case, we are to find concrete constraints on the parameters of system (1.4), 
under which x(r)+ 5 as t-t m with probability 1. We limit the discussiononlytotheproblem's 
continuous version since the results for the discrete case are formulated analogously. Since 
the function f(x) has a single zero I, without loss of generality we can take it that z = 0. 

2. Convergence of the Robbins-Monroe procedure in the presence of purely 
discontinuous Markov perturbations. We examine the procedure of seeking the root of 
the equation f(x) = 0, setting f(t,x,q)=f(x))f g(t,s,?)) in (1.41, i.e., we consider the 
system 

h = s(t) [(l(x) -i- g (G x, 'tl)) dt + s (t, x) %I (2.1) 

We assume that the scalar Markov process -t)(t) is purely discontinuous, having a compact setof 
states q(t) fY and admitting of the decomposition /II/ 

P {rl (x6) = a, t,s~,<t-i_At17)(t)=a}=1--((a)At +o(At) (2.2) 

P (11 (t + At) # a, q ft -I- At) E G Iv (t) = a} = (I (a, G) At f o (At), cc ej& G 

where P {A /B} is the conditional probability. Under these conditions the relations (2.1) 
and (2.2) and the initial conditions 

x(&l) = x01 rl (t,) = rlo (2.3) 

define on set {t> to} X Rcn) X Y a random Markov process (x(t), q(t)} a separable modification 
of which has the continuous realizations x(&w) and the right-continuous realizations 2(&o), 
Let us state the conditions ensuring the convergence of procedure (2.11, (2.2). 

lo. The vector-valued function f(x) is defined on Rcn) and its components have bounded 
first- and second-order partial derivatives 

\-$I<& !$$-I<& i,j,k=l,...,n (2.4) 

20 * The system x* = f(x)is exponentially stable in-the-large and, consequently /12/, a 
positive-definite scalar function v(x) exists admitting of the estimate 

Cl/I 5v < v (4 < C%II 5 I?, (aww'f (4 < -%II xr (2.5) 

iI au/ax II < C, ii x Ii, iI a=vlaxaII G cs (2.6) 

Here &$8x is the vector with coordinates avii3x,,~%/aXa is an n X n-matrix comprisedofthe 

second derivatives ~av~axi~xj, c,, . . ., cc are positive constants. 
3O. The estimate 11 g(t, x, q) iI,< T(V) llzll is valid, where the function m(q) is bounded on Y 

by a number M>O, and for some y>O 

s = {r : w (rl) < cs - Y).7t 0 (2.7) 

40. The intensity of the white noise (I (t,x) is bounded in norm 

11 a (t, a$ a’ (t, cc) II< iy (1 -I- 11 sll% li: > 0, II A II* = =(AA’) 

so. The differentiable function s(t),t> 0 is monotonic and nonnegative, and 

3 a(t) dt = 00, 3 aa (t) dt < 00 

Ll 0 

The following statement is valid: 

12.8) 

(2.9) 
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Theorem 2.1. Let conditions 1o-5o be fulfilled. Then we can find numbers ~~> O,qs>O 

such that the inequalities 

(2.10) 

ensure the convergence r(t)+ 0 as t+ co with probability 1 under any initial conditions 

(2.3). 

Proof. We consider the function /13/ 

1 v (4, ?+=S 
V(t,x,q)= (1-tpu(t))u(x), ?jEV 

(2.11) 

where p is some positive constant which we deal with later on. This function is positive de- 

finite, admits of an infinite lower bound and an infinitesimal upper bound in z in the domain 
{t>O} X R(n) X Y, and has a continuous partial derivative in 1 and bounded first and second 
derivatives in z. Its averaged derivative /4/ relative to system (2.1) at the point (x,1, t) 
is computed by the formula 

dM ["I T=-$-+ ($-)'(I@) + g(t,z, rl)) a(t) + (2.12) 

+Tr(&m’)+ S[V(t,x,ZE)-V(t,s,rl)l~('1,d6) 

Let us estimate dM [VI/&. On the strength of (2.5)-(2.8) we obtain: 
at point t> to, ZE R(“), q E S 

&?p< a A - (6 IV @I - WQ (‘1, V)l (1 x [la + +Kc5aa @)(I + I/x lla) 

at point t > t,, x E I?@), q E v 

qp 6 a-- (4 [pw (11, S) - (1 + pa (t)) (CaM - cdl 1 x p+ $ KG (1 + w(t)) a”(t) (1 + II 5 112) 

Now if the inequalities 

q (rl, J') < ?~a--', 4 (11, S) > (1 + ~a (0)) (GM - ~3) (PC,)-' 

are fulfilled for some p>O, then the condi.tion 

-Jfq < - a(t) 6 II 5 II* + h @) (1 + v (h 5, 11)) (2.13) 

is fulfilled for any x~ R(*),q E Y,t>t,, 
integrable on IO, m). 

where S>O is some constant, h(t) is a function 
The rest of the proof is along a known plan c/2/, p.100) if as the 

set B figuring in /2/ we take B = {(x,q):x = 0, q E Y} which in the case at hand is invariant 
/5/ for the process {z(t), q (t)]. 

Note 2.1. The probabilistic sense of the theorem just proved is that under the con- 
ditions stated the stochastic approximation procedure converges almost surely to the zero of 
function f(z) if the probabilities of the transitions in time 
turbations g('.2,rl) to large ones are sufficiently small, 

At from small values of per- 

abilities are sufficiently large. 
while the inverse transition prob- 

In addition, it should be stressed that under the condi- 
tions the variations of process 9 (% taking place within sets Sand V, do not affect the 
convergence of procedure (2.1). 

Note 2.2. Condition 2O of Theorem 2.1 can be relaxed, 
stability in-the-large of system 

requiring only the asymptotic 
s'=f(z), but then the constraint (2.8) on the white noise's 

intensity must be expressed in terms of the parameters of the Liapunov function. 
We now consider a one-dimensional system 

ax = a(t) ((f(x) + g(t, x, rl)) (7% + 0 ct, x) dE) 
We assume that the unknown functions f(x), g(t,x,q), o(t, x) satisfy the conditions 

(2.14) 
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and that the random Markov process q(t) can be in only the two states n1 and rle. 
that cp(%) - cs < 0 and ~(11%) - c 

We accept 
S> 0, otherwise the problem becomes trivial. We denote the 

expansion coefficients in (2.2) by qra and 
struct the function 

v(t, x,rl) in form (2_11) pzl , respectively. Choosing u(z) = VZxa, we con- 
For dM IVlldt to satisfy bound (2.13) it is 

sufficient to require the fulfillment of the conditions 

cp (rll) - c3 i- Ia2 < -8 3 (1 + w Cd) (9 (qa) - CQ - pq2J < - e (2.16) 

for some positive values of pand E. Let the inequality 

B = (cp (rll) - 4 !?a1 + (‘p (111) - 4 912 < 0 (2.17) 

be fulfilled; then we can find an instant T > to and values CL> 0, E> 0 so small that when 
t> T conditions (2.16) are valid and, consequently, s(t)+ 0 as t+ 00 with probability 1. 
Thus, the fulfillment of (2.17) is sufficient for the convergence of procedure (2.14). We 
should emphasize that this condition cannot be weakened since for the linear equation s' = 

-C8X + q?(?l)X it is a necessary and sufficient condition for the convergence of x(t)to zero 
/14/ with probability 1. 

3. Convergence of the stochastic approximation procedure in the presence 
of continuous Markov noise, Let us examine the procedure of seeking the zero of an un- 
known function f(X) under the condition that its measurements contain, together with Gaussian 
white noise, continuous Markiov perturbations as well, which are modelled as the output 
signals of an asymptotically stable system. In other words, let the zero seeking procedure 
for function f(x) be described by a system of It_o^ stochastic differential equations 

dx = a (t) [(f (4 + Ad d + 01 (k 4 &I (3.1) 

Here vectors x and n are of dimensions n and m, respectively, f(x), A, B, u, (t, xl, 0% (t, 4 are 
matrices unknown in general, of appropriate dimensions, El(t), ES(t) are independent standard 
Wiener processes of dimensions r and S. We formulate below the conditions under which pro- 
cedure (3.1) ensures the convergence x(t)-+ 0 as t--t 00 with probability 1. 

Theorem 3.1. Let the functions f(x), oi(t,s) (i = 1, 2), a(t) satisfy conditions (2.4)- 

(2.6), (2.81, (2.9) and, in addition, let the eigenvalues of matrix Bhave negative realparts, 
while the function a(t) satisfies, for SOme value of constant a> 0 , the inequality 

I a’ (t) u-2 (t) I < 6. Then under any initial conditions x(tc)= x,,, ?J (to) = Q the equality 

P {lh,, 5 (Q = 0 I x (44 = Ql1 rl (t(l) = %I = 1 
is valid for the solution x(t) * 

Proof. We take a function u(x) satisfying conditions (2.5) and (2.6) and we construct 
a quadratic form IU($ for which the estimate 

are valid, where e,, . . . . e5 are positive constants. (The latter is possible by virtue of the 

assumptions on the properties of matrix B). Passing in system (3.1) to the new variables /8/ 

2 = a @)rl, y = x - AB-‘z 

we obtain the system 

dy = a (t)[(j (y + AB-‘z) + AB-‘(1’ (t)a-’ (t)z)dt + a,dE, + AB-‘ozdS,l (3.2) 

dz - (Bz - a' (t)z)dt + a (t)az (t, s)dk, 

We take the function V (y,z) = v(y)+ pw(z), where p>: 0 is some constant. Computing dM [Vlidt 
relative to system (3.2) with due regard to the theorem's conditions, we obtain 
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Hence by simple but cumbersome manipulations we get that starting from some instant i" 2 ta 
the estimate 

ClM [Vlldt < ---a (t)cp (y, z) + h (t)(l + V (y, z)) (3.3) 

is valid under an appropriate choice of number p, where the functions a (t) > 0, h (t) > 0 
satisfy the conditions 

Te(t,&= M, 
"T 

and cp(y, z) is a positive-definite form in Rtn) X fi("). From here on we make use of Theorem8.1 

from /2/. Thus, ZJ (t)+O, z (Q-+0 as t+ 00 with probability 1, which completes the theorem's 
proof. 

Note 3.1. The procedure described can be used for seeking the minimum of a positive- 
definite scalar function F(z), z ER(“), it if is possible to measure 8Ffdr with noise represented 
both as a Markov component as well as a white noise independent of it. In this case we should 
set f (t) = -aF/Oz, u (5) = F (2) in the preceding considerations. As a result we obtain convergence 
conditions for the gradient procedure, close to those examined in /a/ for the discrete case. 

In conclusion we discuss very briefly the case of measurements continuous in time in the 
presence of random jumps. Let the zero seeking procedure for function f(z)be described by 
stochastic differential equations with jumps /4,6/ 

ti = a (t)[U (4 + An)dt + (JI (4 s)dS, + g, (t, s)dS,J 

drl = Blldt + ez (4 4& + 92 (4 #52 

They differ from Eqs.(3.1) only in that, together with the independent standard Wiener proces- 

ses E1 (0, EZ (t), in them occur 5X (Q, SZ (t) , namely, Poisson processes independent of each other 

and of El (t), EZ (t), with the probability &A.t + o(A2) that a jump takes place in process Si tt) 

on the interval [t,t + At]. Under the condition that the jump took place, we denote by Pi(&) 
the corresponding probability measure of the jump's amplitude. We take it that Pi (du)has a 
compact support Uand that 

UP{ (dU) = 0, l uaPi (du) = v; < 00 
u 

These equations and the initial conditions z (t,) = s,,n (to) = q,, define a process (5 017 11 (t)) 
whose realizations are right-continuous with probability 1 (the existence and uniqueness con- 
ditions for the solution of such equations are given in /6/I. 

If we retain all the assumptions in Theorem 2.1 and require that the condition 

II gi @, ai (6 3 II < R (1 + II 5 II% i = 19 2 (3.4) 

be fulfilled, then we can repeat all the arguments of this theorem's proof. As a matter of 
fact, the only difference will be the appearance of additional summands of the form 

s LU (I+ a tt) gi (t7 z)n) - u (z)]h*Pi (du) 
u 

when computing dM[ VI/&. However, in the presence of a bounded second derivative i%/axg these 
summands are majorized by the function chVi'hia*(t)(i+ U(Z)) and the final estimate of dM[V]/dt will 
have the form (3.3) as before. We can convince ourselves that (z(t),q(t)} is a Feller process 
and, hence, since its trajectories are right-continuous, it has the strict Markov property. 
This enables us to make deductions on its regularity and reflexivity with respect to the do- 
main nrU<e for any e>O. The subsequent arguments are along the lines of the proof of the 
corresponding theorem for the continuous case. We note that an analogous jump-like component 
can be added on in Eq.(Z.l). If in that case a condition of type (3.4) is fulfilled, then the 
conclusion of Theorem 2.1 remains valid. 
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